If it's not what You are looking for type in the equation solver your own equation and let us solve it.
25n^2+30n=0
a = 25; b = 30; c = 0;
Δ = b2-4ac
Δ = 302-4·25·0
Δ = 900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{900}=30$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(30)-30}{2*25}=\frac{-60}{50} =-1+1/5 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(30)+30}{2*25}=\frac{0}{50} =0 $
| 2x2-18=643 | | 9c+c-5c=20 | | 10g+g+2g+2g-8g=7 | | 18a-9a+2a-9a=4 | | 18a–9a+2a–9a=4 | | 20r-19r+r=16 | | 20r–19r+r=16 | | v+9−16=20 | | 2j-j=13 | | 8s-6s=14 | | 4.2(5-2x)=1.2(3x-5 | | 12n-5n=14 | | 13•(-1)+2y=1 | | 9j-4j=20 | | 9j=4j=20 | | 2x-2x-6=30 | | x/100=14/56 | | 3w+6=12 | | 4/3(-9x+12)-x=-13x+-16 | | 6x=1x+18 | | 20=v+9−16 | | 6x=1×+18 | | 4/3(-9x+12)-x=-13x+-5 | | 2j–10=2 | | 4/3(-9x+12)-x=-13x+5 | | 9x-7=x+1 | | 4+3x=50 | | (x-6)/3=(x+4)/4 | | 4/3(-9x+12)-x=13x+16 | | 178/5y+1=0 | | 7x-2x+12=2(x-2)+6 | | 2x=2(8−x) |